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The concept of a distorted lattice, 'ideal paracrystal', and its diffraction theory lead to a gene- 
ralization of other well known interference theories and, in particular, under certain special 
conditions, degenerate to the theory of crystals by von Laue and Bragg, to that of liquids by 
Debye & Menke and Zernicke & Prins, and to that of amorphous matter by Guinier-Warren- 
Hosemann. 

No single comprehensive theory of X-ray diffraction 
by matter of all kinds exists at present. There are 
three principal theories, namely the theory of X-ray 
diffraction by crystals by Laue (1913) and Bragg 
(Bragg & Bragg, 1913), that  of liquids by Zernicke & 
Prins {1927) and Debye & Menke (1931), and that  of 
'amorphous' matter by Guinier (1939a, b) and Hose- 
mann (1939), but the exact domain of validity of each 
of these is not clearly defined. Often for a single sub- 
stance, e.g. a high polymer, the simultaneous existence 
of 'crystalline', 'liquid' and 'amorphous' features of 
the material is suggested. Various authors (Kratky, 
1933, 1946; Hermans, 1944; Hermans & Weidinger, 
1948; Warren, 1941; Bear & Bolduan, 1951; Fournet 
& Guinier, 1949) have tried to explain the X-ray 
diagrams by using additional hypotheses, but un- 

fortunately no single theory explains satisfactorily all 
the characteristic features of the interference phe- 
nomena. 

The concept of the 'ideal paracrystal' and the theory 
of its X-ray diffraction as given by Hosemann (1950a, b) 
is a step to fill up the gap in this direction. This theory 
uses the convolution or Faltung of Fourier trans- 
formation, the importance of which in the interference 
theories was first pointed out by Ewald (1940) and 
Hermans (1944). 

Le t  there be N particles, each containing M elec- 
trons. According to the crystal theory, the scattered 
intensity at any angle is proportional to N g M  2, 
whereas in the interference theory of liquids it is 
proportional to N M  2. 'Particle' in the first case stands 
for the total number of atoms in a lattice cell, and in 
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the second case for the liquid molecules themselves. 
Moreover, there are many substances whose scattered 
intensity is proportional to Nfg(20), where p(20)  
denotes the scattered intensity of each particle and 
20 is the scattering angle. Gases and vapours scatter 
according to this law where N represents the number 
of gas molecules. Guinier (1939a, b) and Hosemann 
(1939) have, however, shown tha t  such 'amorphous'  
scattering is also obtained in the small-angle scattering 
of colloidal substances where N represents the number 
of colloid particles. Riley (1944, p. 232), therefore, 
classifies substances such as amorphous coals as 'solid 
bodies of gas type' .  In view of this diversity in the 
behaviour of mat ter  with regard to its diffraction 
power, it is desirable to develop a theory which gives 
the general phase relations between the scattered 
amplitudes of the individual particles and yields 
simultaneously the two extreme cases, namely 
J ~ N p  and J ~ 2VgM ~, as well as the intermediate 
case of 'liquids', namely J ~ N M  ~. This theory is 
fundamental ly one of the statistical problem of order- 
disorder. 

Let ak(k = 1, 2, 3) be the three fundamental  vec- 
tors of a distorted space lattice, and Hk(x) be the 
frequency of meeting the vector a~ = x in the lattice, 

so tha t  I Hk(x)dv~ = 1 and Hk(x)dv ~ is the probabili ty 

of finding the vector ak ~ x ending in the volume 
dv~. O(y--x)  is the electron-density function of the 
lattice cell, whose origin lies at the point x. 0 fluctuates 
purely statistically from cell to cell and is independent 
of the special values of ak. 

The Fourier transform G(b) of any space function 
g(x) in physical space is defined by 

G(b) = ~(g) = I g(x) e x p  [--2zi(bx)]dv~ . 

• The integral is to be taken over the whole of physical 
space, dv~ is the volume element in this space, b is 
called the 'reciprocal vector' in Fourier space and is 
given by 

b : (s--so)/~ , Ibl --~ 2'sin 0/~t, 

where s, s o are unit vectors in the direction of the 
scattered and incident beams respectively, )~ is the 
wave length and 20 is the scattering angle. (bx) is 
the dimensionless scalar product of the vectors b and x 
in the two spaces. Further,  let the following 'structure 
factors' be defined as 

f (b )  = ~(~); F~(b) = ~(H~); S(b) -~ ~((~) . 

Following Ewald, a(x) is called the shape function of 
a single paracrystalli te;  it  has the value 0 for all 
vectors except those ending in the paracrystallite, 
where it has the value 1. Finally let f~(20) denote the 
scattered amplitude of a single electron. 

For ideal paracrystals which have sufficient numbers 
of lattice cells ( >  5) in all three directions the mean 
scattered intensity is given by 

where J : f ~ ( J l - ~ J ~ ) ,  (1) 

J2 -= 1 ]~. iS]2f-'-Zllv~ . (3)* 
Vr 

Z1/vr(b) is called the lattice factor of ideal para- 
crystals t and is given by 

Z1/vr(b) : H Re 1 ~- F k 
k=1,2,3 1 --F--------k ' (4) 

where v~ is the mean value of the volume of a cell 
of the distorted lattice in physical space. 

Equations (3) and (4) hold good also for one- 
dimensional and two-dimensional lattices. 

I t  can be shown tha t  for ideal crystals equation (4) 
degenerates into the well known 'peak-function' of the 
reciprocal lattice 

1 
Zl/v~(b) ---> ~ ~ Pl(b--bh) ' 

where bh is the radius vector of the point h of the 
reciprocal lattice and Pl(b) is the normalized point 
function, which completely corresponds to Dirac's 
5-function and is defined by 

Pl(b) ~ 0 for all b =4= 0 and l Pl(b)dvb = 1 o 

Since 
ISI2pi (b-bh)  ~_ ]S(b--bh)[ 2 , 

equation (3) degenerates for a crystal into the well 
known formula 

l -2 --~ 
J2 : ~ f  ~ [S(b--bh)[ 2 ( 'crystalline' case). (3a) 

In  the general case of paracrystalline lattices equation 
(4) represents a ' lattice hump function';  individual 
humps lying at  the points bh are more and more 
broadened with increasing .Ibh[. Thus the 'amorphous'  
case is realised at  sufficiently great scattering angles 
where the limiting condition 

l im Zl#'r(b)-= 1 
lbl --+ ~ 

is practically fulfilled. 
The intensity of the scattered radiation is then 

given by (cf. equations (2) and (3)) 

* The folding (in German  Faltung) of the  funct ions  Gl(b ) 
and  G~(b) in Four ie r  space is defined b y  

G1Gg. = O3O 1 = Ol(c)O2(b--c)dv c , 

where c is also a reciprocal vector ,  ending in the  vo lume 
e lement  dvc, and  the  in tegra t ion  runs  over the  whole of the  
Four ie r  space. 

t 1/Vr denotes  an index and  no t  a power  of Z (cf. Ewald ,  
f &  

~. Z1/vrdvb'= 1/vr and  dvb is the  vo lume ele- 1940) where 

lattice cell 
m e n t  in Four ier  space. 
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J = Nf~ . f i  ('amorphous' case), (3b) 

since I ISI2dvb = v (v is the volume of the paracrystal) 

and v/v~ ~ N the number of 'particles'. 
For all bh humps of Z1/~(b) which are relatively 

broad compared to the shape factor IS(b)l 2, equation 
(3) degenerates into 

J ---- N f ~ { . ~ + ]  ~ (Z~/~(b)--l)} ('liquid' case). (3c) 

I t  can generally be proved that  for all reflexions 
bh :4 = 0, equation (3c) holds then, and then only, when 
the interaction zone* of a particle (i.e. lattice cell) is 
small compared to the 7olume v of a paracrystal. 
Thus, except for the 'central spot' b h - - 0 ,  there 
appears no scattering component proportional to N 2. 
For a powder diagram equation (3c) degenerates 
further into the well known form of the equation in 
Debye's theory of liquids (Debye & Menke, 1931): 

J =f~(~÷F'2JtaI:W(q)qsin2z~pqdq)pvr-- , (3d) 

where T--]b]2, q=]xl/2 and W(q) is Debye's spherical 
'a priori' distance statistics of liquid molecules. If, on 
the contrary, the interaction zone of a lattice cell is 
large compared to the mean value v of the volume of 
a paracrystal, then each hump of Z1/v~(b) is small 
compared to the shape factor IS] ~, and equation (3) 
degenerates into the crystalline case, equation (3a), 
for all reflexions. 

In all other cases however--and they are quite 
frequently encountered in nature--where the inter- 
action zone is of the same order of magnitude as the 
mean volume v of the paracrystal, both the crystal 
reflexions of the form (3a), and liquid and amorphous 
reflexions of the forms (3c) and (3b), respectively, 
appear on the X-ray diagram. Thus aI1 types of 
reflexions, whether they are proportional to N 2 or to N, 
can be satisfactorily interpreted with the help of 
equations (2) and (3). These equations cover not only 
the cases of crystals, liquids and amorphous substances 
but also of special types of lattice models, e.g. the 
'mixed perfect and imperfect fibril' models of Bear & 
Bolduan (1951) or the 'random layer lattice' model of 
carbon black proposed by Warren (1941). So, in 
general, depending on the relative magnitude and form 

* I t  corresponds, for example in Debye's theory of liquids, 
to the region around a particular molecule where W(q) (see 
equation (3d)) has not yet reached its final value 1. 

of the fluctuation statistics, Hk, and on the statistics 
of particle size of paracrystals, the X-ray diagram may 
show purely 'amorphous', 'liquid' or 'crystalline' re- 
flexions as well as reflexions which have intermediate 
character. Moreover, in certain states of statistical 
distributions it is possible to obtain individual re- 
flexions which in Fourier space show in one direction 
crystalline habit, in another liquid, and in yet another 
amorphous features. Such reflexions were found to be 
present in the small-angle scattering diagrams of 
fibrous proteins (Hosemann, 1951). 

Thus this theory of ideal paracrystals has the 
advantage that  for the interpretation of the X-ray 
diagrams special lattice models are not at all necessary. 
Further, if the lattice is not too much distorted, the 
quantitative study of the X-ray diagrams permits one 
to calculate unambiguously the statistics of the cell 
edges ak and, in special cases, the mean electron-density 
distribution and its fluctuations in the cells (Hosemann, 
1951). 

The present note is a summary of work that  will be 
communicated in full at an early date. 
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